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Resumen 

 
En este trabajo se presenta un estudio del análisis de flujos de potencia en un sistema eléctrico 

simple de dos nodos, mostrando cómo herramientas matemáticas elementales pueden generar 

interpretaciones físicas significativas. El problema se formula como un sistema de dos ecuaciones 

no lineales, explorando la existencia y factibilidad de las soluciones del voltaje en el nodo de 

consumo bajo distintos niveles de demanda. El análisis revela cómo una simple parábola puede 

actuar como frontera de operación y se propone una formulación alternativa como problema de 

optimización sin restricciones. En conjunto, el estudio ofrece perspectivas útiles tanto para la 

enseñanza como para aplicaciones prácticas en ingeniería eléctrica y otras disciplinas. 

 

Palabras clave: flujos de potencia, optimización sin restricciones, funciones de varias variables, enseñanza de 

la ingeniería eléctrica. 
 

 

 

 

 

Abstract 
 

This paper presents a study of power flow analysis in a simple two-node electrical system, showing 

how elementary mathematical tools can generate meaningful physical interpretations. The problem is 

formulated as a system of two nonlinear equations, exploring the existence and feasibility of voltage 

solutions at the consumption node under different demand levels. The analysis reveals how a simple 

parabola can act as an operating boundary, and an alternative formulation is proposed as an 

unconstrained optimization problem. Overall, the study offers useful insights for both teaching and 

practical applications in electrical engineering and other disciplines. 

 

Index terms: power flow analysis; unconstrained optimization; multivariable functions; electrical 

engineering education. 
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I. INTRODUCCIÓN 
 

La importancia de las matemáticas en cualquier área es incuestionable, y en ingeniería esta relevancia se vuelve aún 

más evidente. Sin embargo, con frecuencia la disciplina se reduce a ejercicios que pueden carecer de significado, 

dejando un vacío en los esfuerzos de los estudiantes y en la riqueza intelectual que el tema ofrece. 

  

En muchas instituciones académicas en México y el extranjero es común encontrar planes de estudio en ingeniería que 

incluyen materias básicas durante los primeros años, antes de que los estudiantes se especialicen en su disciplina [1]. 

En matemáticas, por ejemplo, las ingenierías suelen contemplar asignaturas como álgebra lineal y cálculo de una y 

varias variables. Aunque estas asignaturas son fundamentales para la formación intelectual y el desarrollo de 

habilidades cognitivas [2], [3], existe el riesgo de caer en la monotonía, la repetición de temas de niveles previos y/o 

la falta de conexión con la carrera estudiada. Una alternativa es incluir en las clases –en la medida de lo posible– 

aplicaciones orientadas a la disciplina cursada. 

  

A modo de ejemplo, en una materia de matemáticas de la carrera de ingeniería eléctrica, decir que una ecuación 

cuadrática modela el movimiento de un balón o proyectil podría resultar repetitivo y poco motivante. En cambio, 

mostrar que esa misma ecuación puede modelar el riesgo de un apagón en una región del país ayuda a despertar el 

interés y a resaltar la relevancia de las matemáticas para su disciplina 

  

Este trabajo está dirigido principalmente a profesores que imparten la materia de cálculo de una variable y de varias 

variables en la carrera de ingeniería eléctrica y a sus estudiantes, e incluso a estudiantes de últimos semestres que 

deseen recordar la relación de un problema típico de su carrera con las matemáticas que modelan y resuelven este 

problema. Desde luego que esto no excluye a la demás gente interesada en una aplicación real de algunos conceptos 

matemáticos que regularmente se tratan a nivel ingeniería.  

  

El ejemplo y datos del trabajo se encuentran basados en el artículo de T. J. Overbye [4], motivando así a los docentes 

no solo a relacionar trabajos de investigación importantes con conceptos de uso cotidiano en las aulas, sino también a 

desarrollarlos en trabajos escritos o, lo que es más importante, integrarlos en las clases. Desde luego que se exhorta a 

realizar trabajo colaborativo en los cuerpos docentes entre matemáticos e ingenieros para establecer una sinergia que 

permita conseguir lo anterior. De cualquier forma, y con el afán de que no se requiera ser un experto en el área para 

leer el trabajo, éste se ha desarrollado sobre una metodología en la que: 

 

 Se describe el problema, el objetivo y la necesidad de resolverlo. 

 Se plantean las ecuaciones que describen el fenómeno de forma general. 

 Se construye el modelo que se debe resolver a partir de los datos proporcionados. 

 

Finalmente, a partir de ahí, se muestra cómo las matemáticas “de siempre” son útiles para resolver el modelo y 

para dar significados reales en un problema de ingeniería eléctrica. 

 

Esto se ha pensado también con la finalidad de que los profesores del área de matemáticas puedan sacar provecho de 

los conceptos que aquí se aplican y que han mostrado en clase, como: sistemas de ecuaciones, solución de ecuaciones 

cuadráticas, funciones vectoriales, funciones de varias variables, curvas de nivel, gradientes, puntos críticos, criterio 

de las segundas derivadas parciales y su generalización como matriz Hessiana, entre otros. Lo anterior, sin la 

necesidad de entrar en los detalles técnicos de la aplicación. 

  

https://doi.org/10.46842/ipn.cien.v29n2a10
https://creativecommons.org/licenses/by-nc-sa/4.0/


  

 

 Científica, vol. 29, no. 2, pp. 01-22, July-December 2025,  

ISSN 2594-2921, Instituto Politécnico Nacional, MÉXICO 

e290210 | DOI: 10.46842/ipn.cien.v29n2a10 

 

Parábolas, sistemas de ecuaciones y optimización:  
una interpretación física en ingeniería eléctrica 

Carlos Antonio  

Becerril Gordillo 

 

4 

Corresponderá a los estudiantes replicar los cálculos y profundizar en los conceptos eléctricos y matemáticos que aquí 

se plantean. También, y sin dejar de lado la belleza intrínseca de las matemáticas, se les anima a repensar en la 

importancia de esta disciplina, así como imaginar las posibilidades infinitas de aplicación en los demás temas que han 

estudiado, y tener esta misma perspectiva con aquellos temas que aún tienen por estudiar. 

 

 

II. PLANTEAMIENTO Y MODELADO DEL PROBLEMA 
 

En la Fig. 1 se muestra un pequeño sistema eléctrico de potencia que consta de dos nodos. En el nodo 1, se tiene un 

generador con capacidad suficiente para alimentar a un poblado que representa un punto de consumo en el nodo 2; 

ambos puntos están conectados mediante una línea de transmisión, encargada de transportar la energía desde el punto 

de generación hasta el nodo 2, donde será consumida por la carga. 

  

El voltaje en un nodo 𝑘 de un sistema eléctrico se puede expresar como un número complejo, que en forma rectangular 

se escribe como 𝑣𝑘 = 𝑥𝑘 + 𝑗𝑦𝑘, donde 𝑥𝑘 e 𝑦𝑘 son números reales [5]; por ejemplo, el voltaje en el nodo 2 del sistema 

de la Fig. 1 se escribe como 𝑣2 = 𝑥2 + 𝑗𝑦2.  

  

Un problema típico de ingeniería eléctrica para un sistema de dos nodos como el de la Fig. 1, y el objetivo del estudio 

que se realizará en este trabajo, es conocer el voltaje en el punto de consumo, 𝑣2, cuando se demanda cierta 

cantidad de potencia real 𝑃2
𝐷 y reactiva 𝑄2

𝐷  en dicho nodo. En el Apéndice A se presenta una discusión sobre la 

importancia de mantener el voltaje en niveles adecuados, que quizá esté más dirigida a estudiantes de ingeniería 

eléctrica a partir de los semestres intermedios; sin embargo, los estudiantes de los primeros semestres o quienes 

provengan de otras áreas del conocimiento pueden enfocarse en las deducciones e implicaciones matemáticas de los 

efectos ahí descritos. 

 

 
 

Fig. 1. Sistema de potencia de dos nodos (diagrama unifilar y representación real equivalente). 

 

Las ecuaciones que permiten conocer la relación entre las inyecciones netas de potencia y los voltajes en un sistema 

eléctrico de potencia con n nodos, se conocen como ecuaciones de flujos de potencia, y en su forma rectangular se 

encuentran dadas por [5], [6]: 

 

𝑃𝑘 = ∑[𝑥𝑘(𝑥𝑙𝐺𝑘𝑙   − 𝑦𝑙𝐵𝑘𝑙) + 𝑦𝑘(𝑦𝑙𝐺𝑘𝑙 + 𝑥𝑙𝐵𝑘𝑙)]

𝑛

𝑙=1

, 

𝑄𝑘 = ∑[𝑦𝑘(𝑥𝑙𝐺𝑘𝑙  − 𝑦𝑙𝐵𝑘𝑙)  −  𝑥𝑘(𝑦𝑙𝐺𝑘𝑙 + 𝑥𝑙𝐵𝑘𝑙)]

𝑛

𝑙=1

, 

 

 
(1) 
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donde k indica el índice de cada nodo, excepto el de referencia. En este caso, el nodo de referencia es el nodo 1, de 

modo que este índice solo comprende el nodo de carga, así que k = 2. 𝑃𝑘  y 𝑄𝑘 indican la potencia activa y reactiva 

neta inyectada al nodo y dependen de las inyecciones de generación de potencias real y reactiva, dadas por 𝑃𝑘
𝐺 y 𝑄𝑘

𝐺 , 

y de las extracciones (demanda) de potencias real y reactiva, 𝑃𝑘
𝐷 y 𝑄𝑘

𝐷 . Estas magnitudes se relacionan, para el caso k 

= 2, como sigue [5]: 

 

𝑃2 = 𝑃2
𝐺  −  𝑃2

𝐷, 

𝑄2 = 𝑄2
𝐺  −  𝑄2

𝐷 . 

 

(2) 

 

Por su parte, tanto G como B son la componente real e imaginaria de elementos de una matriz que se construye con los 

parámetros de la red, en este caso, los parámetros de la única línea de transmisión1. 

  

El desarrollo de las ecuaciones del sistema (1) es: 

 

𝑃2 = [𝑥2(𝑥1𝐺21  − 𝑦1𝐵21) + 𝑦2(𝑦1𝐺21 + 𝑥1𝐵21)] + [𝑥2(𝑥2𝐺22  − 𝑦2𝐵22) + 𝑦2(𝑦2𝐺22 + 𝑥2𝐵22)], 

 

𝑄2 = [𝑦2(𝑥1𝐺21  − 𝑦1𝐵21) − 𝑥2(𝑦1𝐺21 + 𝑥1𝐵21)]  + [𝑦2(𝑥2𝐺22  −  𝑦2𝐵22) − 𝑥2(𝑦2𝐺22 + 𝑥2𝐵22)]. 

 

(3) 

 

Note que el conjunto de ecuaciones (3) forma un sistema no-lineal de dos ecuaciones con dos incógnitas, 𝑥2 e 𝑦2, que 

son la parte real e imaginaria del voltaje en el nodo de consumo, respectivamente. Es decir, al resolver ese sistema de 

ecuaciones no lineales, estaremos encontrando el valor del voltaje en el nodo 2, para cierta cantidad de potencia real y 

reactiva, lo cual constituye el objetivo principal del estudio conocido como problema de flujos de potencia. 

 

Para estudiar el comportamiento del voltaje ante diferentes niveles de demanda, se considerará un escenario de baja 

demanda, otro intermedio y un tercer escenario que modele una alta demanda [4], como se muestra en la Tabla 1: 

 
TABLA 1. ESCENARIOS. 

 
Escenario Demanda 

Baja, 𝑃2
𝐷 =  200 𝑀𝑊,𝑄2

𝐷 =  100 𝑀𝑣𝑎𝑟. 

Intermedia, 𝑃2
𝐷 =  300 𝑀𝑊,𝑄2

𝐷 =  150 𝑀𝑣𝑎𝑟. 

Alta, 𝑃2
𝐷 =  400 𝑀𝑊,𝑄2

𝐷 =  200 𝑀𝑣𝑎𝑟. 

 

 

Por su parte, el voltaje en el nodo de referencia estará dado por 𝑣1 = 𝑥1 + 𝑗𝑦1 = 1.0  + 𝑗0.0 y el valor de la reactancia 

de la línea de transmisión en por unidad (pu) será de 0.1 (potencia base de 100 MVA). 

 

Consideraciones en la notación. Al tener como único punto de interés el nodo de consumo, y por simplicidad en la 

notación, en lo subsecuente se usará x e y en lugar de 𝑥2 e 𝑦2, y P y Q en lugar de 𝑃2  y 𝑄2. 

 

 

 

                                                             
1 A esta matriz se le conoce como matriz de admitancias nodal 𝑌𝑏𝑢𝑠, y su desarrollo se encuentra en el Apéndice B. 
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III. SISTEMAS NO LINEALES: SOLUCIONES Y SU INTERPRETACIÓN FÍSICA  

 

Los sistemas de ecuaciones en ingeniería son de uso cotidiano, en este caso, el conjunto de ecuaciones (3) forman un 

sistema de ecuaciones no-lineales que puede ser resuelto por medio de sustitución debido a que una de las dos 

ecuaciones es lineal, tal como se verá a continuación.  

 

 

A. DEMANDA BAJA: 𝑃2
𝐷 = 200 MW y 𝑄2

𝐷 = 100 Mvar 

 

Normalizando la demanda a valores por unidad con la base de 100 MVA y considerando las ecuaciones (2), las 

potencias netas en el nodo de carga son: 𝑃 = −2.0 y 𝑄 = −1.0 (no hay inyección local de potencias, 𝑃2
𝐺 y 𝑄2

𝐺). 

 

Usando los valores de las componentes de los elementos de la matriz de admitancias dados en el Apéndice B y sabiendo 

que 𝑥1 = 1.0 e 𝑦1 = 0.0 (componentes del voltaje en el nodo de referencia), las ecuaciones (3) quedan: 

 

2 = −10𝑦 (4) 

1 = 10x − 10𝑦2 − 10𝑥2 (5) 

 

De la ecuación (4): 

𝑦 = −
1

5
 

(6) 

Sustituyendo esto en (5) y reordenando: 

50𝑥2 − 50x + 7 = 0 

 

Resolviendo la ecuación cuadrática se tiene: 

 

𝑥(1) =
5 − √11

10
     y     𝑥(2) =

5  + √11

10
 (7) 

 

Combinando (6) y (7) se tiene que las soluciones del sistema de ecuaciones no lineales (4) y (5) son: 

 

(
5− √11

10
, −

1

5
)     y     (

5  + √11

10
, −

1

5
 ) (8) 

 

Es decir, el voltaje en el nodo de consumo podría tomar alguno de los dos valores obtenidos: 

 

𝑣2
(1)

= 0.1683 − 𝑗0.2     o     𝑣2
(2)

= 0.8317 − 𝑗0.2 

 

Bajo estas condiciones, la solución esperada en operación real es aquella en donde la magnitud del voltaje esté cercana 

a 1 pu y el ángulo de desfasamiento respecto al nodo de referencia no sea demasiado grande, o podría haber problemas 

físicos que se explican en el Apéndice A. 
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En forma polar, los voltajes obtenidos son: 

 

𝑣2
(1)

= 0.26∠ − 49.91°     o     𝑣2
(2)

= 0.86∠ − 13.52° 

 

de modo que la solución esperada en el escenario de baja demanda es 𝑣2
(2)

. 

 

 

B. DEMANDA MEDIA: 𝑃2
𝐷 = 300 MW y 𝑄2

𝐷 = 150 Mvar 

 

Considere que la demanda en el punto de consumo crece en un 50 % de su valor original, entonces el sistema de 

ecuaciones queda: 

3 = −10𝑦, 

1.5 = 10x − 10𝑦2 − 10𝑥2
 

 

Procediendo como en el escenario de baja demanda, las soluciones de este sistema de ecuaciones no lineales son: 

 

(
2

5
, −

3

10
)     y     (

3

5
, −

3

10
 ) (9) 

 

Es decir, el voltaje en el nodo de consumo podría tomar alguno de los siguientes valores obtenidos: 

 

𝑣2
(1)

= 0.4 − j0.3     o     𝑣2
(2)

= 0.6 − 𝑗0.3 

 

En forma polar: 

𝑣2
(1)

= 0.5∠ − 36.87°     o     𝑣2
(2)

= 0.67∠ − 26.57° 

 

Aunque ambas soluciones no son satisfactorias en términos de magnitud, en este escenario de demanda intermedia, 

𝑣2
(2)

 representaría la solución física más deseable. 

 

 

C. DEMANDA ALTA: 𝑃2
𝐷 = 400 MW y 𝑄2

𝐷 = 200 Mvar 

 

Con un crecimiento del 100 % del valor original de la demanda, el sistema de ecuaciones queda: 

 

4 = −10𝑦 

 

2 = 10𝑥 − 10𝑦2 − 10𝑥2
 

 

y en este caso las soluciones de este sistema de ecuaciones no lineales son: 

 

(
1

2
− 𝑖

√11

10
,  −

2

5
)     y     (

1

2
+ 𝑖

√11

10
,  −

2

5
) 

(10) 
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Note que en ambas soluciones, el resultado para la parte real del voltaje 𝑣2 es un número complejo (representado 

mediante una unidad imaginaria distinta por claridad notacional). Sin embargo, esto no implica un cambio de campo 

algebraico considerado, sino la ausencia de una solución físicamente realizable, lo que indica que la demanda de 

potencia es demasiado alta o que la reactancia de la línea es insuficiente para sostener el flujo de potencia, lo cual 

llevaría, en cualquier caso, a un colapso del sistema2. 

 

 

IV. LA PARÁBOLA COMO FRONTERA DE OPERACIÓN 
 

En el escenario de demanda alta resuelto en la sección anterior, se observa que las soluciones reales para el voltaje 

dejan de existir, poniendo en riesgo la sana operación del sistema eléctrico. El patrón de demanda que generó esta 

situación fue (𝑃2
𝐷 ,𝑄2

𝐷) = (400, 200). Dado este hallazgo, es válido preguntar: ¿qué sucede, por ejemplo, con la 

distribución (200, 400)? ¿Existe algún otro caso de demanda que provoque un resultado similar? Si es así, ¿cuántos, 

y más aún, cuáles combinaciones (𝑃2
𝐷 , 𝑄2

𝐷) podrían comprometer la operación del sistema? 

 

Con el fin de responder a las preguntas anteriores, se puede plantear el mismo sistema de ecuaciones no lineales, 

considerando la demanda como un par de parámetros que pueden asumir cualquier combinación de valores. De esta 

manera, es posible explorar para qué valores de (𝑃2
𝐷 , 𝑄2

𝐷) se obtiene una solución físicamente factible. Así, se tiene el 

siguiente sistema de ecuaciones no lineales: 

 

𝑃 = −10𝑦 (11) 

Q = 10x − 10𝑦2 − 10x2 (12) 

 

Siguiendo el procedimiento de sustitución descrito en el escenario de demanda baja, se despeja y de la ecuación (11) 

en función de P, obteniéndose: 

𝑦 = −
𝑃

10
 

(13) 

 

Sustituyendo esto en la ecuación (12): 

Q = 10x −
𝑃2

10
− 10𝑥2 

 

Reescribiendo la expresión anterior como una ecuación cuadrática de x: 

 

−10𝑥2 + 10𝑥 − (Q +
𝑃2

10
) = 0 

Resolviendo: 

 

𝑥(1,2) =
10 ± √100  −  40𝑄  −  4𝑃2

20
 

(14) 

                                                             
2 Sólo al introducir simultáneamente unidades imaginarias no equivalentes –por ejemplo, al considerar extensiones algebraicas 

como los números bicomplejos o los cuaterniones– se accede a estructuras algebraicas más generales [7], [8]. 
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Combinando (13) y (14), se tiene que las soluciones del sistema de ecuaciones no-lineales (11) y (12) son: 

 

(
10 + √100 − 40𝑄 − 4𝑃2

20
, −

𝑃

10
)     y     (

10 − √100 − 40𝑄 − 4𝑃2

20
, −

𝑃

10
) 

 

Note que ahora la naturaleza de la solución para x (la parte real del voltaje) dependerá del valor del discriminante 100  −
 40Q −  4𝑃2, el cual definirá una región en donde el sistema de ecuaciones tendrá o no soluciones reales (Tabla 2). 

 
TABLA 2 

CLASIFICACIÓN DE SOLUCIONES EN FUNCIÓN DE P Y Q. 

 

Condición Soluciones Escenario de 

demanda 

100  −  40Q −  4𝑃2  >  0 Reales y distintas Baja y media 

100  −  40Q  −  4𝑃2 <  0 Complejas Alta 

 

 

En caso de que 100 − 40Q − 4𝑃2 = 0, las soluciones del sistema de ecuaciones (11)-(12) serán reales e iguales3. Esta 

estructura de soluciones reales e iguales se puede escribir como: 

 

Q = −
𝑃2

10
  +  2.5 

(15) 

 

Esta ecuación cuadrática (15) forma una frontera que divide las soluciones reales de las complejas. En efecto, esa 

simple parábola invertida representa la frontera entre la solubilidad y la no-solubilidad (posible apagón) del problema 

estudiado (Fig. 2). 

 

Con la finalidad de evitar la región donde no hay soluciones reales para el problema y que se reduzca el margen de 

estabilidad por el abatimiento significativo del voltaje, es muy importante monitorear de forma constante la distancia 

del punto de demanda actual de operación, a la curva que marca la frontera dada por la ecuación (15). 

 

 

V. SOLUCIÓN COMO UN PROBLEMA DE OPTIMIZACIÓN 
 

Una formulación alternativa al problema planteado en este trabajo es por medio de un problema de optimización de 

una función de varias variables sin restricciones [4], en el cual se busquen los puntos críticos que hacen que la función 

sea mínima e indiquen la calidad de la solución. 

 

                                                             
3 Para obtener un par de valores que hagan cumplir la ecuación, basta con fijar un valor para P, por ejemplo P = 3 y resolver para 

Q, que en este caso resulta en Q  =  1.6. Se puede comprobar que ahora el sistema de ecuaciones tiene la solución x = 0.5,  y = 0.3. 
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Fig. 2. Frontera de solubilidad en el plano 𝑃 − 𝑄. 

 

 

Si se compacta a las demandas P y Q en un vector 𝐒 y a las funciones 

 𝑓1(x,  y)  =   − 10y y   𝑓
2
(x,  y)  =  10x  −  10y  −  10x2 en un vector 𝐟: 

 

𝐒  = [
𝑃
𝑄
] =   [

𝑓1(𝑥,  𝑦)

𝑓2(𝑥,  𝑦)
] = [

−10y

10x  −  10y  −  10x2]. 

 

Con lo anterior, el sistema de dos ecuaciones no lineales con dos incógnitas formado por (11) y (12) se puede escribir 

como: 

𝐒  =  𝐟(𝐱) (16) 

 

en donde, 𝐱  =  [𝑥,  𝑦]T es el vector de incógnitas que contiene la componente real (x) e imaginaria (𝑦) del voltaje en 

el nodo de consumo. 

 

Si la ecuación (16) se escribe como 𝐟(𝐱)  −  𝐒 = 𝟎, se puede definir al lado izquierdo de ésta como una función residual, 

𝐫(x,  y), es decir: 

 

 𝐫(𝑥,  𝑦) =  𝐟(𝐱)  −  𝐒  =   [
𝑓1(𝑥,  𝑦)  −  𝑃

𝑓2(𝑥,  𝑦)  −  𝑄
] 

(17) 

 

Esta función indicaría si la solución encontrada (x, y) es capaz de satisfacer la demanda. Por ejemplo, en la expresión 

(8) se muestran las soluciones obtenidas para el caso en el que P  =  2 y Q  =  1. Evaluando cualquier solución de (8) 

en 𝑓1  y 𝑓2, se tiene que: 

 

𝑓1 (
5 − √11

10
,   −

1

5
)   =  2     y     𝑓2 (

5−√11

10
,   −

1

5
)   =  1 
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lo que significa que, en el escenario de baja demanda: 

 

𝑓1(𝑥,  𝑦)  −  𝑃  =  0     y     𝑓2(𝑥,  𝑦)  −  𝑄  =  0 

 

o lo que es lo mismo: 

𝐫Baja  = [0,  0]𝑇 

 

Haciendo lo propio con los otros dos escenarios, la función residual queda: 

 

𝐫Media  = [0,  0]𝑇,     𝐫Alta = [0,   − 1.1]𝑇 

 

Note que para los escenarios 1 y 2, las soluciones satisfacen la demanda tanto para P como para 𝑄. Sin embargo, en 

𝐫Alta se observa que con la configuración actual del sistema no es posible suministrar la potencia reactiva 𝑄 requerida 

en el nodo de carga, lo cual podría deberse a una limitación en la capacidad de generación de potencia reactiva del 

nodo generador o a restricciones impuestas por la impedancia de la línea de transmisión. 

  

Analizando lo anterior, parece razonable plantearse la búsqueda de los valores de 𝑥 y 𝑦 que hacen que la diferencia 

dada por la función residual sea mínima en cada componente, esperando hacer cumplir (16). Con esta idea, se puede 

definir el siguiente problema de minimización sin restricciones de la función de error cuadrático4 [4]: 

 

min
𝐱

F(𝐱)  =  
1

2
 ‖𝐟(𝐱)  −  𝐒‖2 

(18) 

 

Desarrollando (18) se obtiene una función de dos variables dada por: 

 

F(𝐱)  =  
1

2
 [ (−10𝑦  −  𝑃)2  +  (10𝑥  −  10𝑦2  − 10𝑥2  −  𝑄)2 ] 

(19) 

 

A. PUNTOS CRÍTICOS 

 

Se sabe que, si una función de varias variables sin restricciones como (19) tiene un extremo local en un punto, entonces 

ese punto es un punto crítico [9], [10], lo que significa que: 

 

∇ 𝐅(𝐱)  =

[
 
 
 
∂𝑭

𝜕𝑥
∂𝑭

𝜕𝑦]
 
 
 

= 𝟎 

 

(20) 

 

Para el escenario de baja demanda (𝑃 = 2 y 𝑄 = 1), el sistema de ecuaciones que resulta de (20) es: 

 

(10𝑥 − 10𝑦2 − 10𝑥2 − 1)(10 − 20𝑥) = 0

2  +  12𝑦  −  20𝑥𝑦  +  20𝑥2𝑦  +  20𝑦3 = 0
 

 

                                                             
4 En el Apéndice C se puede consultar la deducción de esta expresión para la función objetivo. 
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Para el escenario de demanda media (𝑃 = 3 y 𝑄 = 1.5): 

 

(10𝑥 −  10𝑦2  − 10𝑥2  −  1.5)(10 −  20𝑥) = 0

3 +  13𝑦 −  20𝑥𝑦 +  20𝑥2𝑦 +  20𝑦3 = 0
 

 

Para el escenario de demanda alta (𝑃 = 4 y 𝑄 = 2): 

 

(10𝑥 −  10𝑦2  − 10𝑥2  −  2)(10 −  20𝑥) = 0

4 +  14𝑦 −  20𝑥𝑦 +  20𝑥2𝑦 +  20𝑦3 = 0
 

 

Las soluciones para cada sistema son las que se obtuvieron en la sección anterior y están dadas por los pares de puntos 

(8), (9) y (10), respectivamente. 

  

Por otro lado, la generalización del sistema de ecuaciones no lineales en el espacio de parámetros 𝑃 − 𝑄 que resulta 

de (20), está dado por: 

 

(10𝑥 −  10𝑦2  −  10𝑥2  −  𝑄)(10 −  20𝑥) = 0 (21) 

𝑃 + (10 +  2𝑄)𝑦 −  20𝑥𝑦 + 20𝑥2𝑦 +  20𝑦3 = 0 

 

(22) 

Para resolver el sistema (21)-(22), se observa que (21) se satisface siempre que alguna de las siguientes dos situaciones 

se cumpla: 

 

10x − 10𝑦2 − 10x2 − Q = 0     o     10 − 20𝑥 = 0 

 

 Considerando la primera opción, si 

10x − 10𝑦2 − 10x2 − Q = 0 

 

entonces: 

10𝑥   −  10𝑥2 −  10𝑦2 = 𝑄 (23) 

 

Sustituyendo esto en la ecuación (22), se obtiene: 

 

P  +  10y  = 0 

Por lo que: 

𝑦 = −
𝑃

10
 

(24) 

 

Sustituyendo en (23), y luego de reacomodar y simplificar se llega a: 

 

x2 − x +
𝑄  +  

𝑃2

10
10

= 0 

 

Resolviendo la ecuación cuadrática: 

https://doi.org/10.46842/ipn.cien.v29n2a10
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x(1,2) =

1 ± √1 −  4(
𝑄 + 

𝑃2

10
10

)

2
 

 

(25) 

 

Combinando (24) con (25), los puntos críticos de la función para esta primera situación son: 

 

(
1 + √1 − 

4

10
 (𝑄 + 

𝑃2

10
)

2
,   −

𝑃

10
 )     y     (

1 − √1 − 
4

10
 (𝑄 + 

𝑃2

10
)

2
,   −

𝑃

10
 ) 

 

(26) 

 

Estos son los valores de (𝑥, 𝑦) donde la función alcanza su mínimo, siempre que la condición sobre la raíz 

cuadrada sea válida, y la región será válida si el discriminante: 

 

1 −
4

10
(𝑄 +

𝑃2

10
) ≥ 0 

que se cumple siempre que: 

𝑄 ≤ −
𝑃2

10
+ 2.5 

 

Esta expresión representa una región en el plano 𝑃 − 𝑄 debajo de la parábola, dada por la ecuación: 

 

Q = −
𝑃2

10
+ 2.5 

 

que es la misma ecuación frontera dada por (15). 

 

 Considerando la segunda opción, si 

10 − 20x = 0 

 

entonces se obtiene de forma directa que: 

 

x =
1

2
 

(27) 

 

Por otro lado, el valor de 𝑄 dado por (23) genera el resultado para 𝑦 vía la ecuación (22), de modo que, 

sustituyendo (27) en (23) y resolviendo para 𝑦 se obtiene: 

 

𝑦 = ±√
2.5 − 𝑄

10
 

 

(28) 

 

Es decir, combinando (27) y (28), otro par de puntos críticos de la función son: 

https://doi.org/10.46842/ipn.cien.v29n2a10
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(
1

2
,  √

2.5 − 𝑄

10
)     y     (

1

2
,   − √

2.5 − 𝑄

10
) 

(29) 

 

Note que en este caso la parte imaginaria del voltaje depende directamente de 𝑄, y que para que la solución sea 

real se debe cumplir que Q ≤ 2.5, en caso contrario, el sistema no puede operar en este punto crítico con el flujo 

de potencia reactiva especificado. 

 

En resumen, existen cuatro puntos críticos para la función, dados por las expresiones (26) y (29), que por comodidad 

se reescriben a continuación: 

 

(
1 + √1 − 

4

10
 (𝑄 + 

𝑃2

10
)

2
,   −

𝑃

10
 ), (

1 − √1 − 
4

10
 (𝑄 + 

𝑃2

10
)

2
,   −

𝑃

10
 ), (

1

2
,  √

2.5 − 𝑄

10
) y (

1

2
,   − √

2.5 − 𝑄

10
) 

 

(30) 

 

 

B. MATRIZ HESSIANA (CRITERIO DE LAS SEGUNDAS DERIVADAS PARCIALES) 

 

La matriz hessiana 𝐻 es una matriz cuadrada que contiene todas las segundas derivadas parciales de una función de 

varias variables, y permite identificar si los puntos críticos obtenidos son máximos, mínimos o puntos silla en 

problemas de optimización sin restricciones, como el que se presenta ahora. La matriz hessiana de una función 

f(x1,  x2, … ,  xn) de 𝑛 variables, es una matriz de orden n × n que se define como [10], [11]: 

 

𝐻(𝑓) =

[
 
 
 
 
 
 
 

𝜕2𝑓

𝜕x1
2

𝜕2𝑓

𝜕x1𝜕x2

⋯
𝜕2𝑓

𝜕x1𝜕xn

𝜕2𝑓

𝜕x2𝜕x1

𝜕2𝑓

𝜕x2
2 ⋯

𝜕2𝑓

𝜕x2𝜕xn

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕xn𝜕x1

𝜕2𝑓

𝜕xn𝜕x2

⋯
𝜕2𝑓

𝜕xn
2 ]

 
 
 
 
 
 
 

 

 

La condición que debe cumplir un punto crítico (x1,  x2, … ,  xn) para que sea un mínimo local es que la Hessiana sea 

una matriz definida positiva; es decir, que todos sus menores principales superiores izquierdos tengan determinante 

positivo [10], [11]. 

 

Para una función de dos variables 𝐹(𝑥, 𝑦), la Hessiana es: 

 

𝐻(𝐹) = [
𝐹xx 𝐹xy

𝐹yx 𝐹yy
] 

 

El criterio de definitud se simplifica entonces a: 

 

 El determinante de la Hessiana debe ser positivo: det 𝐻(𝐹) >  0. 

 El primer menor principal (el primer elemento de la diagonal), Fxx, es positivo: Fxx  >  0. 
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Esto corresponde al criterio de las segundas derivadas parciales, que dice [9]: “Dado el punto crítico (𝑎, 𝑏), para 

buscar los extremos relativos de 𝐹, considérese la cantidad 

 

d =  𝐹xx(𝑎, 𝑏) 𝐹yy(𝑎, 𝑏)  −  [ 𝐹xy(𝑎, 𝑏) ]
2
 

 

Si 𝑑 > 0 y 𝐹𝑥𝑥(𝑎, 𝑏) > 0, entonces 𝐹 tiene un mínimo local en (𝑎, 𝑏).” 

 

Note que 𝑑 > 0 es la condición del determinante de la Hessiana, mientras que Fxx(a, b) > 0 es el valor del primer 

menor principal. 

  

Los demás criterios son: Si 𝑑 > 0 y 𝐹𝑥𝑥(𝑎, 𝑏) < 0, entonces 𝐹 tiene un máximo local en (𝑎, 𝑏). Si 𝑑 < 0, entonces 𝐹 

tiene un punto silla en (𝑎, 𝑏). Si 𝑑 = 0, el criterio no lleva a ninguna conclusión. 

 

De esta forma, la matriz hessiana de la función F(x) dada en (19), queda: 

 

𝐻 = [
(10 − 20𝑥)2 − 20(10𝑥 − 10𝑦2 − 10𝑥2 − 𝑄) −20𝑦(10 − 20𝑥)

−20𝑦(10 − 20𝑥) 100 + 400𝑦2 − 20(10𝑥 − 10𝑦2 − 10𝑥2 − 𝑄)
] 

 

Para el escenario de baja demanda (𝑃 = 2 y 𝑄 = 1), los puntos críticos obtenidos en (30) son: 

 

(0.832, −0.2), (0.168,−0.2), (0.5, 0.387) y (0.5,−0.387). 

 

Analizando (0.832,−0.2), la matriz hessiana queda: 

 

𝐻(0.832,−0.2) = [44.1344 −26.56
−26.56 116.0448

] 

 

Como el determinante de la matriz hessiana, det(𝐻) = 4416.1340 > 0, y el primer menor principal 

 𝐻11(0.832,   − 0.2 ) = 44.1344 > 0, se concluye que el punto (0.832,   − 0.2 ) es un mínimo local. El valor mínimo 

en este punto crítico es F(0.832,   − 0.2 )  =  2.5088  ×  10−6. Este punto crítico (0.832,   − 0.2 ) es la solución 𝑣2
(2)

 

obtenida en la sección III-A. 

 

En la Tabla 3 se muestra un resumen de resultados para el escenario de demanda baja en cada uno de los puntos críticos; 

se invita a verificar estos cálculos y a completar la tabla para los demás escenarios. 

 
TABLA 3 

ANÁLISIS DE LOS PUNTOS CRÍTICOS PARA EL ESCENARIO DE DEMANDA BAJA. 

 

Punto crítico 𝐝𝐞𝐭(𝑯) 𝑯𝟏𝟏 Evaluación de 𝒇 Conclusión 

(0.832, −0.2) 4416.1340 44.1344 2.5088e-06 Mínimo 

(0.168, −0.2) 4416.1340 44.1344 2.5088e-06 Mínimo 

(0.5, 0.387) -7.3856 -4.62e-02 17.2285 Punto silla 

(0.5, −0.387) -7.3856 -4.62e-02 1.7485 Punto silla 

 

 

Finalmente, en las Fig. 3, 4 y 5 se muestran tanto la superficie como las curvas de nivel de la función (19) para los tres 

escenarios estudiados.  
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Las curvas indican el valor de la función objetivo (error cuadrático, que tiene que ver con la calidad de las soluciones 

encontradas) en el espacio de los valores de las componentes real e imaginaria x e y del voltaje en el nodo de carga. En 

cada línea de contorno mostrada se puede encontrar la pareja 𝑥, 𝑦 para la cual el valor del error cuadrático es 

exactamente el mismo. Es decir, las curvas de nivel permiten identificar valores constantes de 𝑧 para un conjunto de 

puntos (𝑥, 𝑦). 

 

 
  

 

Fig. 3. Superficie y curvas de nivel para 𝑃 = 2 y 𝑄 = 1. 

 

 

 
 

 
 

Fig. 4. Superficie y curvas de nivel para 𝑃 = 3 y 𝑄 = 1.5. 

 

 

 
  

 

Fig. 5. Superficie y curvas de nivel para 𝑃 = 4 y 𝑄 = 2. 
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VI. COMPARACIÓN DE ENFOQUES: SISTEMAS NO LINEALES VS. OPTIMIZACIÓN 
 

Al comparar los dos enfoques aplicados en este trabajo –el sistema de ecuaciones no lineales y la formulación de 

optimización– se observa una aparente disparidad: mientras que desde la perspectiva de ecuaciones no lineales puede 

no existir solución real, la formulación de optimización siempre entrega un mínimo de la función de error, incluso 

cuando no se cumplen exactamente las ecuaciones originales. 

  

Esto se debe a que la función 𝐹(𝑥, 𝑦) representa el error cuadrático asociado a las ecuaciones no lineales (11)-(12), 

cuantificando qué tan cerca está un par (𝑥, 𝑦) de satisfacer el balance de potencias. En ausencia de solución exacta, el 

mínimo de 𝐹(𝑥, 𝑦) indica la mejor aproximación posible dentro de las restricciones del sistema. 

 

Por ejemplo, para 𝑃 =  4, 𝑄 =  2: 

 El sistema de ecuaciones no lineales no tiene solución real: al sustituir 𝑦 = −
𝑃

10
= −0.4 en (12), el 

discriminante asociado es negativo. 

 Sin embargo, al minimizar 𝐹(𝑥, 𝑦), se encuentra un mínimo global, lo cual significa que en la pareja (𝑥, 𝑦) 

encontrada, el error es el menor posible, aunque no se satisfagan de forma exacta ambas ecuaciones no lineales 

de las que se parte. 

 

En la Tabla 4 se muestra la comparación entre ambos enfoques. 

 
TABLA 4. 

COMPARACIÓN ENTRE EL ENFOQUE DE SOLUCIÓN EXACTA Y EL ENFOQUE DE OPTIMIZACIÓN. 

 
Enfoque Objetivo Existencia de soluciones 

Sistema no lineal. Encontrar (𝑥, 𝑦) tal que se cumplan de forma 

exacta las ecuaciones de balance. 

No existe solución real si el sistema es inconsistente (por 

ejemplo, discriminante negativo). 

Optimización. Encontrar (𝑥, 𝑦) tal que se minimice el error 

cuadrático en las ecuaciones de balance. 

Siempre existe mínimo, aunque el error no sea cero. 

 

 

VII. CONCLUSIONES 
 

Este estudio demuestra cómo conceptos matemáticos aparentemente sencillos pueden ofrecer interpretaciones físicas 

significativas en un problema de la ingeniería eléctrica. Por ejemplo:  

 

 Se evidenció cómo una parábola puede funcionar como frontera de operación, separando las soluciones 

físicamente posibles de aquellas inviables, lo que además se convierte en recurso visual para comprender esos 

límites de operación. 

 También se mostró que la formulación como sistema de ecuaciones no lineales permite identificar 

directamente soluciones exactas y detectar casos en los que la demanda no es sostenible. 

 Por otra parte, la reformulación como un problema de optimización ofrece, en cambio, un mínimo de error 

cuadrático incluso cuando no existen soluciones exactas, proporcionando así una aproximación útil y continua 

del comportamiento del sistema. 

 

Finalmente, se plantea que incorporar estos enfoques en la enseñanza podría ayudar a los estudiantes a vincular los 

conceptos abstractos con problemas reales, lo que potencialmente incrementaría su motivación y comprensión 

profunda de la materia. 
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APÉNDICE A 

IMPORTANCIA DE UN NIVEL CORRECTO DE VOLTAJE 
 

Aunque el sistema considerado en este estudio es un esquema simplificado de dos nodos, la necesidad de mantener el 

voltaje en el nodo de consumo dentro de márgenes adecuados (por ejemplo, ±5 % respecto al valor nominal) refleja 

una situación real en la operación de sistemas eléctricos. En el caso específico del sistema de potencia de dos nodos 

aquí estudiado (Fig. 1), se pueden presentar fenómenos de: 

 

 Bajo voltaje: 

 Pérdidas en la línea. La potencia activa consumida en el nodo de carga 𝑃2
𝐷, depende del voltaje y 

corriente en ese punto, de acuerdo con: 

 

𝑃2
𝐷 = |𝑣2| |𝐼2| cos𝜃 

 

donde 𝜃 es el ángulo de desfase entre el voltaje y la corriente en el nodo. Si el voltaje |𝑣2| disminuye, 

la demanda de corriente |𝐼2| debe aumentar para mantener el mismo nivel de potencia activa 𝑃2
𝐷 

demandada (asumiendo que el ángulo 𝜃 se mantiene aproximadamente constante). Este incremento 

de corriente genera mayores pérdidas en la línea por efecto Joule, modeladas por: 

 

𝑃pérdidas = |𝐼2|
2𝑅 

 

donde 𝑅 es la resistencia de la línea. 

 

 Disminución en la capacidad de transmisión. El flujo de potencia activa en la línea que une los 

nodos 1 y 2 está dada por [5]: 

 

𝑃12 =
|𝑣1||𝑣2|

𝑋
sin δ12 

 

donde 𝛿12 es el ángulo de desfase entre los voltajes 𝑣1 y 𝑣2. Dado que 𝑋 es la reactancia (fija) de la 

línea de transmisión y que |𝑣1| = 1.0 (fijo), una disminución en |𝑣2| reduce el producto |𝑣1||𝑣2|, lo 

que puede llevar a una reducción de la potencia activa transmitida. En esta situación, el sistema 

podría no ser capaz de suministrar toda la potencia activa requerida por la carga, limitando el 

suministro de energía. 

 

 Sobrevoltaje: 

 Activación de protecciones. Algunos dispositivos incluyen protecciones contra sobrevoltaje que los 

desconectan si el voltaje excede ciertos límites. En instalaciones industriales, un voltaje excesivo 

puede activar protecciones en motores, afectando así la producción. 

 

 Circulación no deseada de reactivos en la red. El flujo de potencia reactiva en la línea que une los 

nodos 1 y 2 está dado por [5]: 

 

𝑄12 =
|𝑣1|

2 − |𝑣1||𝑣2| cos δ12

𝑋
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Dado que 𝑋 es fijo y |𝑣1| = 1.0, un aumento en |𝑣2| puede hacer que el término |𝑣1||𝑣2| cos𝛿12 se 

acerque o incluso supere a |𝑣1|
2, haciendo que 𝑄12 disminuya o cambie de signo. Esta variación, y 

en particular el posible cambio de dirección del flujo (𝑄12 < 0), puede provocar un reajuste en los 

niveles y rutas de circulación de la potencia reactiva en el sistema. Si este reajuste recae sobre 

elementos que no fueron diseñados para absorber o suministrar dicha potencia –como líneas, 

transformadores o bancos de capacitores en otras zonas–, estos podrían verse forzados a compensar 

el nuevo flujo, saliéndose de sus condiciones normales de operación. 

 

Por ejemplo, si la potencia reactiva comienza a circular entre otro par de nodos 𝑘𝑙 incrementando 

𝑄𝑘𝑙, se incrementará la corriente en esa línea, ya que [5], [6]: 

 

𝐼𝑘𝑙 =
√𝑃𝑘𝑙

2  +  𝑄𝑘𝑙
2

|𝑉𝑘|
 

 

lo cual provoca un aumento en las pérdidas por efecto Joule (ver pérdidas en la línea por bajo voltaje). 

 

 Pérdidas en la línea. Las pérdidas por efecto corona están dadas por [6]: 

 

𝑃12
corona = |𝑣op|

2
𝐺12 

 

donde 𝐺12  es la conductancia asociada al efecto corona y |𝑣op| es el voltaje de operación de la línea. 

Este voltaje es el nivel al que normalmente opera dicha línea durante condiciones estables, y se 

refiere al voltaje entre conductores (fase-fase) o entre conductor y tierra (fase-tierra), dependiendo 

del sistema. En condiciones normales de operación, el voltaje a lo largo de una línea de transmisión 

suele mantenerse relativamente uniforme, por lo que puede aproximarse al valor medio entre los 

voltajes en sus extremos, siempre que no existan perturbaciones importantes o caídas de tensión 

significativas en la línea (condiciones transitorias o de falla). 

    

Entonces, si el nodo de carga presenta un sobrevoltaje (𝑣2 ↑), es razonable asumir que la línea 

también opera a un voltaje elevado, lo que intensifica la ionización del aire alrededor de los 

conductores y, por lo tanto, incrementa las pérdidas por efecto corona. 

 

 

APÉNDICE B 

CONSTRUCCIÓN DE 𝑌BUS 
 

El sistema de dos nodos de la Fig. 1 consta de una sola línea de transmisión con una impedancia: 

 

𝑍 =  𝑅 +  𝑗𝑋 =  0.0 +  𝑗 0.1 p.u. 

 

De este modo, la admitancia de la línea es: 

 

𝑌 =
1

𝑍
=

1

𝑗𝑋
= −𝑗

1

0.1
= −𝑗10 p.u. 
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La matriz de admitancias nodales tiene la forma [5], [6]: 

 

𝑌𝑏𝑢𝑠 = [
𝑌11 𝑌12

𝑌21 𝑌22
] 

donde 

 𝑌𝑖𝑖 (elementos diagonales) representan la admitancia propia de cada nodo. 

 𝑌𝑖𝑗  (elementos fuera de la diagonal) representan la admitancia mutua entre nodos. 

 

La admitancia propia se calcula como suma de las admitancias de las líneas conectadas a él. Como solo hay una línea 

entre el nodo 1 y el nodo 2, con admitancia 𝑌 =  −𝑗10, se tiene: 

 

𝑌11 = −𝑗10 = 𝑌22 

 

Por su parte, la admitancia mutua es simplemente el negativo de la admitancia de la línea, es decir: 

 

𝑌12 = 𝑗10 = 𝑌21 = −𝑌 

  

Entonces: 

𝑌𝑏𝑢𝑠 = [
𝐺11 + 𝑗𝐵11 𝐺12 + 𝑗𝐵12

𝐺21 + 𝑗𝐵21 𝐺22 + 𝑗𝐵22
] = [

0 −  𝑗10 0 +  𝑗10
0 +  𝑗10 0 −  𝑗10

] 

 

es decir: 

𝐺11 = 0 𝐵11 = −10 𝐺12 = 0 𝐵12 =    10 

𝐺21 = 0 𝐵21 =    10  𝐺21 = 0 𝐵22 = −10 
 

 

 

APÉNDICE C 

DEDUCCIÓN DE LA FUNCIÓN OBJETIVO 

 
Una función vectorial es aquella cuya salida es un vector, sin importar si su entrada consiste en uno o varios números 

reales [9], [10]. La función residual (17) es un ejemplo de función vectorial, recibe dos números reales, x e y, y devuelve 

un vector de dos componentes, [𝑟1 , 𝑟2].  
  

Esto representa un inconveniente para los métodos de optimización, ya que éstos requieren una función objetivo 

escalar, es decir, una función cuya salida sea un número real a partir de entradas reales [11]. Dado que la función 

residual es vectorial, no puede minimizarse directamente; por ello, se define una función equivalente que condense la 

información de la residual en un solo valor real. 

  

Primero se debe notar que, si 𝑓(𝑥) − 𝑆 es igual al vector cero (0) como sucede con 𝒓Baja y 𝒓Media, entonces su norma 

‖𝒇(𝒙) − 𝑺‖ es igual a cero, pero de los reales (0), y ahora se cuenta con una función escalar de varias variables. 

Tomando este beneficio, se puede plantear el problema como: 

 

min
𝑥

 ‖𝒇(𝒙) − 𝑺‖ 
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Sin embargo, al igual que la función valor absoluto para funciones de una variable, la norma de una función genera 

puntos en donde la derivada no existe (picos o puntos angulares desde el punto de vista geométrico) [12]. Esto podría 

ser un inconveniente para el uso de métodos de optimización numérica que utilizan las derivadas como parte de su 

algoritmo, como el método del gradiente o el método de Newton [11]. 

  

Una alternativa que evita lo anterior surge de la siguiente observación: Si la función ‖𝒇(𝒙) − 𝑺‖ = 0 entonces el 

cuadrado de esa norma también lo es, es decir, ‖𝒇(𝒙) − 𝑺‖2 = 0. Esta última es ahora una función derivable en todos 

los puntos y podría definirse como la función objetivo buscada. Sin embargo, la derivada de esta función siempre 

agregará un 2 en todos los cálculos, el cual podría influir en el desempeño de los métodos de optimización numérica. 

Para solventar esta última dificultad, se puede agregar el coeficiente 
1

2
 a la función objetivo para quedar tal como se 

definió en el problema de optimización sin restricciones (18) de la sección V: 

 

𝐹(𝑥) =
1

2
‖𝒇(𝒙) − 𝑺‖2 

 

Es importante mencionar que esta modificación no afecta a la ubicación de los mínimos, ya que éstos suceden siempre 

en los puntos en los que el gradiente de la función es cero y el coeficiente no genera cambios en éste. 

  

Para verificar lo anterior, considere que 𝒈(𝒙) = 𝒇(𝒙) − 𝑺, y que se define como función objetivo a 𝑮𝟏(𝒙) = ‖𝒈(𝒙)‖2, 

entonces: 

 

∇𝑮𝟏(𝑥) = ∇‖𝒈(𝒙)‖2 

 = ∇(𝒈𝑻𝒈) 

∇𝑮𝟏(𝑥) = 2𝒈 ⋅ ∇𝒈 

 

lo cual se anula siempre que 𝒈 ⋅ ∇𝒈 = 0. 

 

Por otro lado, si se define como función objetivo a 𝑮𝟐(𝒙) =
1

2
‖𝒈(𝒙)‖2, se tiene que: 

 

∇𝑮𝟐(𝒙) = 𝒈 ⋅ ∇𝒈 

 

lo cual también se anula cuando 𝒈 ⋅ ∇𝒈 = 0. 

 

Es decir, en ambos casos los puntos críticos ocurren cuando 𝒈 ⋅ ∇𝒈 = 0, pero en el primer caso persiste un factor 2, 

mientras que en el segundo no. 

 

Nota: En [4] se usa la expresión: 

 

𝐹(𝑥) =
1

2
[𝒇(𝒙) − 𝑺]𝑇[𝑓(𝒙) − 𝑺] 

 

en lugar de 𝐹(𝒙) =
1

2
‖𝒇(𝒙) − 𝑺‖2. Sin embargo, de las propiedades del producto interno, si 𝑣 es un vector en 𝑅𝑛, 

entonces [9], [10]: 

 

𝒗𝑇 ⋅ 𝒗 = |𝒗|2 
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